Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Zhen Xie* and Wei-Juan Pan

State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China

Correspondence e-mail: zhengyueqing@nbu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.031 wR factor = 0.088 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography

All rights reserved

Aquaoxalato(2,4,6-tri-2-pyridyl-1,3,5-triazine)zinc(II) tetrahydrate

The title compound, $[Zn(C_2O_4)(C_{18}H_{12}N_6)(H_2O)]\cdot 4H_2O$, crystallizes isostructurally with the Co [Cheng, Xu & Zheng (2006), *Acta Cryst.* E**62**, m2561–m2563] and Cu [Zheng, Xu, Lin & Fang (2006), *J. Coord. Chem.* **59**, 1825–1834] analogues, with distorted octahedral coordination geometry. $O-H\cdots O$ hydrogen bonds form a chain along the *a* axis.

Received 20 March 2007 Accepted 21 March 2007

Comment

Non-covalent interactions, such as hydrogen-bonding and $\pi - \pi$ stacking interactions, play important roles in the crystallization process (Stang & Olenyuk, 1997). For a long time, multidentate *O*- or *N*-donor ligands have been widely used to construct complexes (Ghumaan *et al.*, 2006; Zhou *et al.*, 2007). We present here the crystal structure of the title compound, (I).

Compound (I) crystallizes isostructurally with the the Co (Cheng *et al.*, 2006) and Cu (Zheng *et al.*, 2006) analogues. As illustrated in Fig. 1, the Zn atom shows a distorted octahedral coordination by three N atoms of the tridentate chelating ligand, two O atoms of the oxalate ligand and a water molecule. The plane defined by atoms N1, N2 and N3 is almost perpendicular to that composed of atoms O1, O3 and O5, making a dihedral angle of 89.50 (6)°. Compared with the reported values of 2.073 (4) Å for Zn-N_{central}, and 2.193 (4) and 2.271 (4) Å for Zn-N_{lateral} (Harvey *et al.*, 2004), the bond lengths are slightly longer in (I) (Table 1). The Zn-O_{acid} lengths in (I) are slightly shorter than the corresponding bonds in the similar bis-monodentate structure [2.070 and 2.155 Å; Fu *et al.*, 2003).

In the crystal structure of (I), $O-H \cdots O$ hydrogen bonds (Table 2) lead to the formation of a chain along the *a* axis.

metal-organic papers

Figure 1

The asymmetric unit of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 45% probability level. H atoms have been omitted for clarity.

Experimental

Dropwise addition of Na_2CO_3 (2.0 ml, 1.0 M) to a stirred solution of ZnCl₂ (0.136 g, 1.00 mmol) in H₂O (5.0 ml) produced a white precipitate, which was then centrifuged and washed with water until no Cl⁻ anions were detectable. The collected precipitate and tptz (tptz is 2,4,6-tri-2-pyridyl-1,3,5-triazine) (0.312 g, 1.00 mmol) were added to a stirred solution of oxalic acid (0.126 g, 1.00 mmol) in CH₃OH-H₂O (30.0 ml; 1:1 v/v). The resulting mixture was stirred for a further 15 min. After filtration, the yellow filtrate (pH = 2.58) was evaporated slowly at room temperature and afforded yellow crystals of (I) over a period of a month (yield 20.1%, based on initial ZnCl₂ input).

Crystal data

$[Zn(C_2O_4)(C_{18}H_{12}N_6)(H_2O)] \cdot 4H_2O$	$\gamma = 107.74 \ (4)^{\circ}$
$M_r = 555.81$	V = 1172.9 (6) Å ³
Triclinic, P1	Z = 2
$a = 7.8711 (16) \text{\AA}$	Mo $K\alpha$ radiation
b = 11.766 (2) Å	$\mu = 1.11 \text{ mm}^{-1}$
c = 13.982 (3) Å	T = 298 (2) K
$\alpha = 97.88 \ (3)^{\circ}$	$0.33 \times 0.33 \times 0.16 \text{ mm}$
$\beta = 102.84 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) $T_{\min} = 0.695, \ T_{\max} = 0.840$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.088$ S = 1.115273 reflections 365 parameters

11532 measured reflections 5273 independent reflections 4399 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.40$ e Å⁻³ $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Zn-O1	1.9972 (16)	Zn-N1	2.236 (2)
Zn-O3	2.0853 (15)	Zn-N2	2.0834 (16)
Zn-O5	2.0843 (16)	Zn-N3	2.3017 (18)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H19\cdots O4^{i}$	0.75 (3)	2.00 (3)	2.738 (2)	166 (4)
O5−H20···O8	0.82(3)	1.92 (3)	2.738 (3)	177 (3)
$O6-H21\cdots O7^{i}$	0.90 (5)	1.93 (5)	2.822 (4)	174 (4)
O6−H22···N6	0.84(4)	2.25 (4)	3.056 (3)	160 (4)
$O7-H23\cdots O9^{ii}$	0.77(4)	2.07 (4)	2.786 (4)	154 (4)
$O7-H24\cdots O9^{iii}$	1.03 (4)	1.81 (4)	2.830 (3)	168 (4)
$O8-H25\cdots O6^{iv}$	0.81(4)	2.03 (4)	2.834 (4)	171 (4)
$O8-H26\cdots O7^{v}$	0.76 (5)	2.11(5)	2.861 (5)	174 (4)
$O9-H27\cdots N6^{vi}$	0.88 (4)	2.21 (4)	3.060 (3)	160 (4)
O9−H28···O2	0.81 (3)	1.92 (3)	2.720 (3)	171 (3)

Symmetry codes: (i) x - 1, y, z; (ii) x - 1, y - 1, z; (iii) -x, -y, -z; (iv) -x - 1, -y, -z; (v) x, y + 1, z; (vi) x + 1, y + 1, z.

All H atoms bound to C were positioned geometrically and refined as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms attached to O were located in a difference Fourier map and refined freely refined O-H distances are in Table 2.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This project was supported by Ningbo University Foundation (grant Nos. 008-460452, 008-460453 and 008-430281). The authors thank Dr Y.-Q. Zheng for providing the research environment and critical instruction.

References

- Cheng, D.-Y., Xu, W. & Zheng, Y.-Q. (2006). Acta Cryst. E62, m2561-m2563. Fu, Z. Y., Dai, J. C., Zhang, J. J., Hu, S. M., Fu, R. B., Du, W. X. & Wu, X. T.
- (2003). Inorg. Chem. Commun. 6, 919-921. Ghumaan, S., Kar, S., Mobin, S. M., Harish, B., Puranik, V. G. & Lahiri, G. K.
- (2006). Inorg. Chem. 45, 2413-2423. Harvey, M. A., Baggio, S. & Baggio, R. (2004). Acta Cryst. C60, m498-m500.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas,
- USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res. 30, 502-518.
- Zheng, Y. Q., Xu, W., Lin, F. & Fang, G. S. (2006). J. Coord. Chem. 59, 1825-1834
- Zhou, X. P., Zhang, X. J., Lin, S. H. & Li, D. (2007). Cryst. Growth Des. 7, 485-487.